top of page


My current research focus is hypergraph-based learning models on datasets with many modalities (e.g., text, image, and video), with applications in online news reporting and social media analysis. By extracting multimodal features using natural language processing (NLP) and computer vision (CV) techniques, I analyze the media’s responsibility of the biased representation of social minorities focusing on gender, race, migrants, and refugees. I have also worked on developing Bayesian deep learning on time series forecasting and implementing convolutional neural networks (CNN) for the neural mechanisms of political ideology using the fMRI brain dataset.


Analyzing Social Media Images used in Political Communication


Seo Eun Yang, Yakov Bart, Costas Panagopoulos

This project focuses on the Instagram-based visual communication styles as a distinct form of political persuasion and image-making in US context. While Twitter and Facebook have been used as two main platforms for research on online political engagement, there is scarce research on Instagram and its political marketing. Instagram is an image-based social media platform where political players increasingly use still and moving images for attention-grabbing purpose, selfexpression, political messaging, mobilization, and engagement. In today’s visually oriented media environment, the heads of governments and lawmakers are constantly communicating with visual messages designed to influence public opinion on a wide range of topics. This is because visuals have the capacity to present concrete political ideas and political personas fluently. However, little is known about the role and impact of highly personalized forms of visual political communication using Instagram for public image and reputation management as an effective e-communication tool. For example, we have limited knowledge on distinct visual and verbal patterns in Instagram posts of Republicans and Democrats, and whether using a certain visual strategy may provide an edge in competitive election campaigns.

The Dynamic Relationships
between Media Narratives, Foreign Policy, and Public Opinion


Getty Image

Co-PI: Seo Eun Yang, Xuechen Chen, Myojung Chung 

Scholars in International Relations (IR) and Political Communication have established that media narratives of global events have a far-reaching impact on shaping public opinion and foreign policy behaviors. However, there is limited empirical research that unpacks the complex relationship between media discourse, foreign policy, and the public's responses to global crises. Besides, existing research on this topic tends to rely on small-scale media datasets and labor intensive case studies, which hinders comparative analysis of large-scale multilingual media narratives across different cultural and political contexts. To fill these gaps of research, this project adopts cutting-edge artificial intelligence techniques to uncover the relationship between media narratives, foreign policy, and public opinion concerning contemporary warfare and humanitarian crises. By bringing together an interdisciplinary team with its roots in Computational Social Science, IR, and Media Studies, this project also seeks to pursue greater societal impact by responding to the pressing need to develop effective models and tools which can be used by policy-makers and business sectors to make scientific prediction regarding international actors’ political communication, diplomacy and the public’s responses to global crises.

Functional Connectivity Signatures of Political Ideology


Seo Eun Yang, James Wilson, Zhong-Lin Liu, Skyler Cranmer

Paper link:

News Article: 

Emerging research has begun investigating the neural underpinnings of the biological and psychological differences that drive political ideology, attitudes, and actions. Here we explore the neurological roots of politics through conducting a large sample, whole-brain analysis of functional connectivity (FC) across common fMRI tasks. Using convolutional neural networks, we develop predictive models of ideology using FC from fMRI scans for nine standard task-based settings in a novel cohort of healthy adults (n = 174, age range: 18-40, mean = 21.43) from the Ohio State University Wellbeing Project. Our analyses suggest that liberals and conservatives have noticeable and discriminative differences in functional connectivity that can be identified with high accuracy using contemporary artificial intelligence methods and that such analyses complement contemporary models relying on socio-economic and survey-based responses. Functional connectivity signatures from retrieval, empathy, and monetary reward tasks are identified as important and powerful predictors of conservatism, and activations of the amygdala, inferior frontal gyrus, and hippocampus are most strongly associated with political affiliation. Although the direction of causality is unclear, this study suggests that the biological and neurological roots of political behavior run much deeper than previously thought.

Beyond Pairwise Relationship: Hypergraph as a new Graph-based Paradigm in Political Networks


Seo Eun Yang

Multimodal datasets contain a huge amount of information from diverse modalities, such as text, audio, and video. Big data revolution and artificial intelligence have created unprecedented research opportunities for political scientists to delve deeply into huge amounts of multimedia objects. A growing number of scholars realize the need to develop a data-driven method to combine diverse unstructured data such as text, audio, and video in a unified model and encode complex relationships between them. To address such challenging issues and search for new methods, this project introduces a hypergraph as a new graph-based paradigm to handle multimodal datasets and model rich patterns of complex relationships among multimedia objects. Specifically, I introduce three hypergraph-based learning models and various applications ranging from political communication to legislative politics.

A Picture is worth a Thousand Words. 

Machine-Learning Visual Framing Analysis


Seo Eun Yang

This paper presents an automated machine learning method to jointly explore word phrases and visual features of photographs in an unsupervised manner to measure media bias in contemporary media sources. I develop a scalable hypergraph regularized tensor decomposition that maps multimedia items stored in a three-order tensor into a low dimensional semantic space to uncover hidden topic structures in media coverages. Analyzing 173,204 articles with news photographs from 145 online newspapers for political bias in news reporting about abortion and immigration,my method examines the patterns of news reporting on the visual and verbal level and identifies politically charged phrases and visual characteristics.

Image with Text:

Multimodal Framing Analysis of Online News Coverage on the European Refugee Crisis


Seo Eun Yang

In news reporting about conflict and crisis, photographs convey stories that generate emotions of all kinds that words cannot always deliver. While the rapid growth of online news photographs has created unprecedented research opportunities, quantitative approaches that deal with the volume, variety, and complexity of both images and texts have lagged behind in social science. To address such challenging issues and search for new methods, this paper introduces a new method for quantitative framing research to examine the patterns of news reporting on the visual and verbal level and explore image-text relations in news stories. Specifically, I introduce hypergraph as a new graph-based method to integrate the various types of data and model their complex relationships in a network. Using hypergraph, I develop a hypergraph regularized topic model that fuses the visual, textual, and other multimedia features simultaneously to find the latent topic representation in media coverage during the European refugee crisis in 2015. 

Automatically Finding Agenda Dimensions
from UNGA texts

Seo Eun Yang, Jared F. Edgerton

Most of this rapid growth of information owes its origin to the unstructured data in the wild like texts as compared to the structured information stored in databases. Every year, the UN generates thousands of publications and documents such as draft resolutions, annual reports, meeting records, agendas, vote records, and lists of participants. Currently, the UN offers one million digital links that contain bibliographic metadata records and text-heavy data. While the explosion of UN documents has created unprecedented research opportunities for IR scholars, quantitative approaches that deal with the volume, variety, and complexity of such data have not been sufficiently introduced. A core research challenge presents itself as to how to turn such massive unstructured data into structured knowledge and integrate structured and unstructured data in a unified model. Ignoring tons of UNGA texts and records loses a lot of valuable insights on states’ policy preferences, political proximity, and the political implications of change in the UN Security Council. To address this, this project develops a machine learning model for a total of 427,253 draft resolutions for 193 countries collected over 70 years. We will first discover the underlying agenda dimensions from large-scale draft resolutions. Then, we will evaluate the model by predicting which countries dominate specific agenda by mapping each country to each agenda dimension.

Bayesian Deep Learning 

for Identifying Granger Causal Graphs and 

Forecasting Political Dynamics


Seo Eun Yang, Skyler Cranmer, Caleb Pomeroy

Time series modeling and Forecasting conflicts has traditionally been made using regression models of different types with parametric assumptions in political science. Current pre-assumed regression models for time series forecasts still face limitations in many empirical applications. First, classical Bayesian time series models do not scale. With the advent of Big Data, we now have many alternative ways to forecast conflicts by extracting insights from massive high-quality data. Second, identifying a suitable forecasting model for a particular time series beforehand is not possible due to the lack or incompleteness of our domain knowledge in many cases. To address such challenges, we propose Bayesian scalable causal graph learning (BSCGL). BSCGL models find the form of mapping function between input and output directly from data and capture the nonlinearities that traditional linear/nonlinear statistical models cannot fully develop. Thus, more complex relationships between time series can be discovered without relying on domain knowledge and any distribution assumption, resulting in better in-sample and out-of-sample prediction performances. Our proposed model also discovers non-linearities in the underlying granger causal mechanisms in time series.

bottom of page